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Abstract

We prove that a symmetric space is Osserman if its complexification is a complex hgplrK
symmetric space. This includes all pseudo-hypahlér as well as para-hyperakler symmetric
spaces. We extend the classification of pseudo-hyjéaldt symmetric spaces obtained by the first
and the third author to the class of para-hypéhter symmetric spaces. These manifolds are possible
targets for the scalars of rigit¥ = 2 supersymmetric field theories with hypermultiplets on four-
dimensional space-times with Euclidean signature.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A (pseudo-) Riemannian manifold is called @sserman spac# the characteristic
polynomial of the Jacobi operat&y = R(-, X)X is same for all unit vectorX. In this paper
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we present a new class of Ossermann spaces with many interesting properties (see Theorem
4). Our examples are pseudo-Riemannian symmetric spacess/H, whereGis a 3-step
nilpotentgroup and/ = Hol(M) is Abelian. Moreover, they carry an invariant hypeger

or para-hyper-ihler structure. Simply connected symmetric hypahlker manifolds were
classified in2]. Here we give also the classification of simply connected symmetric para-
hyper-Kahler manifolds (see Theorem 3). We believe that this classification will be useful

for physical applications, since there is evidence that para-hyphkleK manifolds are
precisely the allowed targets for the scalars of rigid= 2 supersymmetric field theories

with hypermultiplets on four-dimensional space-times with Euclidean signatur@{3ee

2. Basic facts about symmetric spaces

In this section we recall some general facts about symmetric spaces.

2.1. Real and complex symmetric spaces

A pseudo-Riemannian symmetric sp&a pseudo-Riemannian manifolif( ¢) such
thatany pointis anisolated fixed point of an isometric involution. Such a pseudo-Riemannian
manifold admits a transitive Lie group ofisometriegnd can be identified with/L,,, where
L, is the stabilizer of a poird. More precisely, any simply connected pseudo-Riemannian
symmetric spac@/ = G/K is associated with a symmetric decomposition

g=t+m, [LECE [EmlCcm, [mm]cCt (2.1)

of the Lie algebray = Lie G together with an Ag-invariant pseudo-Euclidean scalar pro-
duct onm. We will assume tha® acts almost effectively oM, i.e. £ does not contain any
nontrivial ideal ofg, thatM andG are simply connected and théts connected. Then, under
the natural identification of the tangent spdg@/ at the canonical base point= e¢K with

m, the holonomy grougHol C Adg|m. We will denote byh the holonomy Lie algebra,
which is spanned by the curvature operatfi(s, y), x, y € m. Recall that the curvature
tensorR of a symmetric spac® = G/K atois ad--invariant and is given by

R(x,y) = _aqx,y]|m-

Since the isotropy representation is faithful, we can identify the holonomy algebra
spafR(x, y)|x, y € m} with the subalgebra = [m, m] of g. It is easy to see that the group
generated by the idegl+ m C g = £ + m acts transitively orM. So replacing the sym-
metric decompositiof + m by h + m, if necessary, we can assume that ) = [m, m].

Note that the symmetric decomposition can be reconstructed from the curvaturéRensor
More precisely, let C gl(m) be a linear Lie algebra which preserves a pseudo-Euclidean
scalar product om and letR be a¢-invarianté-valued 2-form onm which satisfies the
Bianchi identity. Then the formulas

[A,x] =Ax for Aet,xem and [, y]=—R(x,y) for x,yem
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define the structure of a Lie algebra with a symmetric decomposgiont + m. The
corresponding simply connected pseudo-Riemannian symmetric 8pace& /K has the
holonomy algebrg = [m, m].

A complex Riemannian manifold a complex manifoldVl equipped with a complex
metricg, i.e. a holomorphic section e I'(S27* M) which defines a nondegenerate complex
guadratic form. As in the real case any such manifold has a unique holomorphic torsionfree
and metric connection (Levi-Civita connection).

A complex Riemannian symmetric spé&ca complex Riemannian manifold( g) such
that any point is an isolated fixed point of an isometric holomorphic involution. Like in
the real case one can prove that it admits a transitive complex Lie group of holomorphic
isometries and that any simply connected complex Riemannian symikesiassociated
to a complex symmetric decomposition

g=t+m, [LEcCet [Em]Ccm, [mm]=¢t (2.2)

of a complex Lie algebrg together with an adinvariant complex scalar product om
More preciselyM = G /K, whereG is the simply connected complex Lie group with the
Lie algebrag andK is the (closed) connected subgroup associated twitlthe holonomy
group of such manifold ig = Adg|m.

Any pseudo-Riemannian symmetric spa¢e= G/K associated with a symmetric de-
compositiong = £ + m has a canonical complexificatiod© = GC/KC defined by the
complexificationg® = t€ 4+ mC of the symmetric decomposition.

2.2. Hyper-Kahler and para-hyper-gfler symmetric spaces

A (possibly indefinite) £)-hyper-Kéhler manifoldis a pseudo-Riemannian manifold
(M*, g) together with a parallekf-hypercomplex structurée. three anticommuting par-
allel endomorphism fields/t, Jo, J3 = J1J2), which are skew symmetric with respecito
and which satisfy? = JZ = ¢ld, ¢ € {+, —}. Notice that the producis is a parallel skew
symmetric complex structure. The notion ej-fyper-Kahler manifold unifies the notion
of hyper-Kahler manifold(e = —) and ofpara-hyper-Kahler manifold(e = +). Notice that
the triple (J1, J2, J3) defines the structure of a vector space over the quaternicas)
or over the para-quaternions-£ +) on the tangent space.

The above conditions mean that the holonomy group &H@&8pk, 1), n = k + 1, in the
case = — and HolC Spg, R) := Sp(R?") in the case = +. Two (¢)-hyper-Kahler man-
ifolds (M, g, J,) (@ = 1,2,3)and (', ¢, J.) are calledsomorphidf there is a diffeomor-
phisme : M — M’ such that*J/, = J, andp*g’ = g.

An (¢)-hyper-Kahler symmetric spacis a pseudo-Riemannian symmetric spate=¢
G/K, g) together with an invariantsf-hypercomplex structure. Consider now a simply
connected «)-hyper-Kahler symmetric spaceM = G/K, g, J,). Without restriction of
generality we will assume thab acts almost effectivelyM being €)-hyper-Kahler is
equivalent to

Spk, ), for &= —

Ad
Klm Spe, R), for &= +.
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SinceK is connected, this condition means precisely thatrad- som) commutes with
the Lie algebra

sp(l)C sofm) = so(4, 4), for &= —

Q = spa/, J2. Js] sl(2, R) C sofm) = so(2, 2n), for &=+
spanned by the three anticommuting structukes/, Js3.

A complex hyper-Khler manifoldis a complex Riemannian manifold/(*, g) of
complex dimension # together with a compatible hypercomplex structure, i.e. tigree
orthogonal parallel complex linear endomorphisths (2, J3 = J1J2) with J§ = —1.This
means that the holonomy group HolSp@:, C) = Zp(.,c)(Sp(L C)). The linear group
Sp, C) is diagonally embedded into Sp(C) x Spg, C) C GL(4n, C). Two complex
hyper-Kahler manifolds &, g, Jo) (@ = 1,2,3) and (/', ¢’, J.) are calledsomorphicif
there exists aholomorphic diffeomorphigm M — M’ suchthap*J), = J, andp*g’ = g.
We notice that the complexification of ag){hyper-Kahler symmetric space is a complex
hyper-Kahler symmetric space.

3. Classification of real and complex hyper-Khler symmetric spaces

Now we recall the classification of real and complex hypahkr symmetric spaces
[AC]. Let (E, w) be a complex symplectic vector space of dimensiop®dE = ET @ E~
a Lagrangian decomposition. Then any elemgnrt S*E* defines a simply connected
complex symmetric spac¥ of dimension 4 which is associated with the symmetric
decomposition

g=bh+m,

wherem = H® E, H = C2 = C1@ Cj = H = spar{1, i, j, k} with its standard complex
symplectic structure®, h = spaniS, .| e, ¢’ € E} C sp(E) with the natural action om C
H ® E and the Lie brackeh A m — b is given by

[h®e h' ®€]=wf(h,1)S, ..

HereS, . € S2E = sp(E) denotes the contraction 6fe S*E* ¢ S*E with e¢’ € S?E by
means ofw.

Theorem 1. [AC] Let M§ be the complex symmetric space associated oS*ET.
Then it is a complex hyperdfler symmetric space with complex Riemannian metric
g defined byw” ® w. and compatible hypercomplex structufé;, J», J3) defined by
(Ri®1d, R; ® Id, — R ® Id), whereR, denotes the right multiplication by the quaternion
g. Moreover M¢ has no flat factor if and only i§¢ g E := spar{S, se”le, ¢/, ¢" € E} =

E™T. Conversely, any simply connected complex hypmt” symmetric space is of the
form M.
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To obtain real hyper-Ehler symmetric spaces, let us assume thatfmwj we have a
compatible quaternionic structuye E — E, i.e. an antilinear map such th&t= —Id and
j*o = w, and aj-invariant Lagrangian decompositidh= E* @ E~. Such a decompo-
sition exists if and only if the Hermitian formr = w(-, j-) has real signature {4, 4m),
wherem is related to the complex dimensiom &f Mg by n =2m. On H = H we
fix the standard quaternionic structuj€ = L;, the left-multiplication withj. It satis-
fies (j)* o = ™. We denote byr the real structure o8? E induced by the quater-
nionic structurej on E: t(e1ez...e2.) := jle1)j(e2)... jlez), s € E. Onm=HQ®E
we have the real structure:= j7 ® j. We assume tha§ € S*E™ is real, i.e.z§ = S.
Then S defines a (real) symmetric spadés, which is associated with the symmetric
decomposition

g0 = ho + mo,
where
bo:=h":=hN(S?E)", mp:=mw” =(HQ E)".

Theorem 2. [AC] Let Mg be the symmetric space associatedste (S*ET)?. Then

it is a (real) hyper-Kdhler symmetric space with pseudo-Riemannian metric defined
by (! ® )|y, and compatible hypercomplex structufé;, Jo, J3) defined byJ; =

(Ri ®1d)|y, J2 1= (R; ® Id)|mO and J3 1= J1J2 = —(Ry ® Id)|,,,- The metric has sig-
nature (4m, 4m), 4m = dim¢ E. The complexification of/g coincides with the complex
hyper-Kahler symmetric spac# ¢ associated t& e S*E*. Any simply connected hyper-
Kéahler symmetric space is the Riemannian product of a flat hyaétdf symmetric space

(a hyper-Hermitian vector space) of arbitrary signat#p, 4¢) and a hyper-lahler sym-
metric space of the form.

4. Classification of para-hyper-Kahler symmetric spaces

In this section we give the classification of simply connected para-hypheK sym-
metric spaces. The basic data for the construction of such spaces are the foll@&yinas)(
a real symplectic vector space of real dimension2y = E;{ ® E, alagrangian decom-
position andHy = R? with its standard symplectic structusgf| and para-hypercomplex
structure

, 01 . 10 g (01
= N = 9 an == .
J1 10 J2 0-_1 J3 10

Then any elemertt € S“Ear defines a simply connected symmetric spaeof dimension
4n which is associated with the symmetric decomposition

g0 = bo + mo,
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wherem = Ho ® Eo, h = spar(S, e, ¢ € Eg} C sp(Eo) with the natural action omg =
Ho ® Eg and the Lie bracketig A mg — b is given by

[h®e b @] =wl(h,h)See.

HereS, . € S2Eq = sp(Eo) denotes the contraction Sfe S*E{ ¢ S*Eqwithee’ € S2Eq
by means ofug.

Proposition 1. The Lie algebragyy associated witl§ € S“Ear is 3-step nilpotent i # 0
and Abelian ifS = 0.

Proof. To S € S*E we associate the subspace
Ts i= Sko EoEo = SpanS, y¢’le, ¢, ¢’ € Eo} C Ef,

which is nontrivial forS # 0. Using the fact thaljg is Abelian and thas, ..¢” = 0 if one
of the three arguments belongsEg‘, one can easily check that the central series is given
by:

[90. 90l = bo+ Ho® s
[90: [90 80ll = HO® X5

[90, [90, [80, 80ll] = 0.

O

Theorem 3. Let Mg be the symmetric space associated S S4E5L. Then it

is a para-hyper-l&hler symmetric space with pseudo-Riemannian metric defined by
w{j®wo and compatible para-hypercomplex structuié;, J2, J3) defined byJ; :=
j1®ld, J2 := j> ® ldandJs := J1J> = j3 ® Id. The metric has sighatui@n, 2n), 2n =

dim Ep. The complexification of/g coincides with the complex hypeaKlér sym-
metric spaceM¢. associated to the complex extensi§fie S*Et, Et = Ear ® C,

of Se S“Ear . Any simply connected para-hypeeHléer symmetric space is of the
form M.

Proof. It is easy to check thaMy is a para-hyper-Ehler symmetric space of signa-
ture (21, 2n) whose complexification coincides with the complex hypé&hler symmet-

ric spaceM<.. We now prove that any simply connected para-hypahkr symmetric
space is of the forndfs. Let M be such a symmetric space associated with a symmetric
decomposition

do = ['JO + mp.

SinceM is para-hyper-ihler , we can identifymg = Hp ® Eg with the tensor product
of two symplectic vector spacddy = R? and Eg. The pseudo-Riemannian metric bh
corresponds to the product of the two symplectic structures and the holonomy Lie algebra
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ho C 1d ® sp(Eo) = sp(Eop) acts only on the second factor. The complexificatiéhof M
is the complex hyper-Ehler symmetric space associated to the symmetric decomposition

g=h+m, bh=ph®C, m=mC=HQRE,

where €, w) and #H, »™) are the complexifications of the real symplectic vector spaces
(Eo, wo) and (Ho, a)g] ), respectively. ByTheorem 3 M¢ = M. is associated to a quartic
polynomial §¢ € S*E* ¢ S*E = S*E*, whereE+ C E is a Lagrangian subspace. Now
we prove that the multilinear forr§¢ € S*E* has real values 06*Eq and hence defines
an element oF*Eg. First we remark that by the definition of the Lie brackek m —

S?Eo = sp(Eo) D ho = [mo. mo] = spar{S¢ " (h, i)le, ¢’ € Eo. h,h' € Ho}

= spar{S‘ Jle.e € Eg} = SEO Eo-

This shows thatSy, , C S?Eq and hence thag® is real valued. We denote by the
corresponding element &f*Eo. Then we have ® e, i’ ® €] = S, »wl (i, ') for all

e,¢ € Eg andh, h’ € Hyp andbhy = [mo, mg] = Sk, £,. The (real) subspacgo N ET C

Eg is isotropic. Therefore, there exists a Lagrangian subsﬁ%cez Ep, which contains
EoN ET. Thus,

SEQ,EQEO = S%O»EOEO C EO N E+ C Ea—

Now the next lemma implies thate S*EJ and we can conclude thaf = Ms. O

Lemma 1. Let E be a (real or complex) symplectic vector spaEeC E a subspacge
S e S*E andSg gE C F.ThenS € S*F.

Proof. LetC c E be acomplement df. We denote by andF” the annihilators o€ and
Fin E*, respectively. We can consider them again as subspadesiafthe identification
E* Z E given by the symplectic form. The decomposition

SE = @)1 4=4S"C - SIF.

gives rise to a decompositich= Zp+q=4 SP4 whereS?4 € SPC - S1F. Now from
F D SgpE D Spr pr FN = SFA W Fh o SFA N

SFA mFhcC and SFA mF" CF,

we conclude thas*® = 0. Then, similarly, by considering successively paC™ C F
Sga,cnCN C FandSer crC" C F we can conclude that! = 0,522 = 0 ands13 =
respectively. This shows that= %4 € S*F. D
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5. Hyper-Kahler symmetric spaces are Osserman

Let (M, g) be a pseudo-Riemannian (or complex Riemannian) maniflts curva-
ture tensor andX € 7,M a tangent vector. The symmetric operafy : T,M > Y
R(Y, X)X € T,M is called theJacobi operatorof X. We denote byS(TM) :={X e
TM|g(X, X) = £1} the bundle of unit vectors.

Definition 1. (M, g) is called arOsserman spadéthe characteristic polynomiay (1) =
det¢ Id — Rx) of Ry is independent ok € S(TM).

Theorem 4. Let(M, g) be an(e)-hyper-Kahler symmetric space (or acomplex hypexrier
symmetric space) of dimensidn. Then(M, g) is an Osserman space. More precisely, the
product of any two Jacobi operators is zero. In particular, all Jacobi operators are nilpotent
and Px(t) = 1.

Proof. Since the complexification of any)hyper-Kahler symmetric space is a complex
hyper-Kahler symmetric space, it is sufficient to prove the theorem for complex hyper-
Kahler symmetric spaces. By Theorem 1 any complex hy@dnd¢ symmetric spadd is

of the formM = My for someS € S*E*. Itis sufficient to check thaRx Ry = 0 for all

X, Y e T,M, whereo is the canonical base point of the symmetric spige Any tangent
vectorX € T,M = m = H ® E can be decomposed &s= Ziz=1 h; ® e;, whereh; ¢ H
ande; € E. SORy is given by:

Rx = Z R(,h® e,')hq,' Qej.
iJ

This shows that it is sufficient to check that the product of any two operators of the form
R(,h ®e)h' @ ¢ is zero. Lethy, ..., hqy € H andey, ..., eq € E. Applying the operator
R(-, h1 ® e1)h2 Q@ e2t0 h ® e we have:

Rh®e, h1®e1)hs ® ez = 0 (h, h1)hy @ Se.ere2 = @ (h, h1)ho ® Sep eze.

Next we applyR(-, h3 ® e3)ha ® e4 to the result, which yields:
o (h, h1)R(h2 ® Sey.cre, ha ® e3)ha @ eq
= o™ (h, h1)o" (h2, ha)ha ® S(s,, ,,0).e504
= o™ (h, h1)w™ (h2, h3)ha ® Ses,e4Se1,e,¢ = 0.

O
Here we have used the complete symmetnSofhe fact thats,, .,e € ET and that
Sg.g C S?E™ vanishes orE™. This shows that the composition of any two operators of
the formR(-, h ® e)h’ ® €' is zero and, hence, th&yx Ry = O forall X, Y.

Remark 1. If S = 0thenthe Jordan normal form of the Jacobi operakarslepends on the
directionX. Infact Ry = 0if X € H® E™T and, if S # 0, then there exist¥ ¢ H ® E~
such thatRy # 0.
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Remark 2. In dimension 4, pseudo-Riemannian manifolds satisfying the Osserman con-
dition pointwise are characterized as self-dual Einstein 4-manifeldg his implies that
symmetric Ricci-flat Osserman spaces of dimension 4 are the same as symajwtyjod(f-
Kahler manifolds. Similarlygomplexsymmetric Ricci-flat Osserman spaces of dimension
4 are the same ammplexsymmetric hyper-Khler manifolds. It follows from Theorem 1
that any complex hyper-&hler symmetric space of dimension 4 is defined by a quartic
polynomialS = ¢, ¢ € E. Up to isomorphism, there are only two such manifolds: the flat
one corresponding = 0 and the non-flat one correspondingtg 0. In the real case, it
follows from Theorem 2 that any 4-dimensional hypeikiter symmetric space is flat. How-
ever, by Theorem 3 there exists two non-flat para-hyp@Em&r symmetric spaces which
correspond to the polynomiatse®, e € Eo. These manifolds occur if8] as examples of
Osserman spaces of signatureZp
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