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Abstract

We prove that a symmetric space is Osserman if its complexification is a complex hyper-Kähler
symmetric space. This includes all pseudo-hyper-Kähler as well as para-hyper-Kähler symmetric
spaces. We extend the classification of pseudo-hyper-Kähler symmetric spaces obtained by the first
and the third author to the class of para-hyper-Kähler symmetric spaces. These manifolds are possible
targets for the scalars of rigidN = 2 supersymmetric field theories with hypermultiplets on four-
dimensional space-times with Euclidean signature.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A (pseudo-) Riemannian manifold is called anOsserman spaceif the characteristic
polynomial of the Jacobi operatorRX = R(·, X)X is same for all unit vectorsX. In this paper
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we present a new class of Ossermann spaces with many interesting properties (see Theorem
4). Our examples are pseudo-Riemannian symmetric spacesM = G/H , whereG is a 3-step
nilpotent group andH = Hol(M) is Abelian. Moreover, they carry an invariant hyper-Kähler
or para-hyper-K̈ahler structure. Simply connected symmetric hyper-Kähler manifolds were
classified in[2]. Here we give also the classification of simply connected symmetric para-
hyper-K̈ahler manifolds (see Theorem 3). We believe that this classification will be useful
for physical applications, since there is evidence that para-hyper-Kähler manifolds are
precisely the allowed targets for the scalars of rigidN = 2 supersymmetric field theories
with hypermultiplets on four-dimensional space-times with Euclidean signature (see[4]).

2. Basic facts about symmetric spaces

In this section we recall some general facts about symmetric spaces.

2.1. Real and complex symmetric spaces

A pseudo-Riemannian symmetric spaceis a pseudo-Riemannian manifold (M,g) such
that any point is an isolated fixed point of an isometric involution. Such a pseudo-Riemannian
manifold admits a transitive Lie group of isometriesLand can be identified withL/Lo, where
Lo is the stabilizer of a pointo. More precisely, any simply connected pseudo-Riemannian
symmetric spaceM = G/K is associated with a symmetric decomposition

g = k+m, [k, k] ⊂ k, [k,m] ⊂ m, [m,m] ⊂ k (2.1)

of the Lie algebrag = LieG together with an AdK-invariant pseudo-Euclidean scalar pro-
duct onm. We will assume thatG acts almost effectively onM, i.e. k does not contain any
nontrivial ideal ofg, thatM andGare simply connected and thatK is connected. Then, under
the natural identification of the tangent spaceToM at the canonical base pointo = eK with
m, the holonomy groupHol ⊂ AdK|m. We will denote byh the holonomy Lie algebra,
which is spanned by the curvature operatorsR(x, y), x, y ∈ m. Recall that the curvature
tensorRof a symmetric spaceM = G/K ato is adk-invariant and is given by

R(x, y) = −ad[x,y] |m.

Since the isotropy representation is faithful, we can identify the holonomy algebrah =
span{R(x, y)|x, y ∈ m} with the subalgebrah = [m,m] of g. It is easy to see that the group
generated by the idealh+m ⊂ g = k+m acts transitively onM. So replacing the sym-
metric decompositionk+m by h+m, if necessary, we can assume thatk = h = [m,m].

Note that the symmetric decomposition can be reconstructed from the curvature tensorR.
More precisely, letk ⊂ gl(m) be a linear Lie algebra which preserves a pseudo-Euclidean
scalar product onm and letR be ak-invariantk-valued 2-form onm which satisfies the
Bianchi identity. Then the formulas

[A, x] = Ax for A ∈ k, x ∈ m and [x, y] = −R(x, y) for x, y ∈ m



D.V. Alelseevsky et al. / Journal of Geometry and Physics 53 (2005) 345–353 347

define the structure of a Lie algebra with a symmetric decompositiong = k+m. The
corresponding simply connected pseudo-Riemannian symmetric spaceM = G/K has the
holonomy algebrah = [m,m].

A complex Riemannian manifoldis a complex manifoldM equipped with a complex
metricg, i.e. a holomorphic sectiong ∈ �(S2T ∗M) which defines a nondegenerate complex
quadratic form. As in the real case any such manifold has a unique holomorphic torsionfree
and metric connection (Levi-Civita connection).

A complex Riemannian symmetric spaceis a complex Riemannian manifold (M,g) such
that any point is an isolated fixed point of an isometric holomorphic involution. Like in
the real case one can prove that it admits a transitive complex Lie group of holomorphic
isometries and that any simply connected complex Riemannian symmetricM is associated
to a complex symmetric decomposition

g = k+m, [k, k] ⊂ k, [k,m] ⊂ m, [m,m] = k (2.2)

of a complex Lie algebrag together with an adk-invariant complex scalar product onm.
More preciselyM = G/K, whereG is the simply connected complex Lie group with the
Lie algebrag andK is the (closed) connected subgroup associated withk. The holonomy
group of such manifold isH = AdK|m.

Any pseudo-Riemannian symmetric spaceM = G/K associated with a symmetric de-
compositiong = k+m has a canonical complexificationMC = GC/KC defined by the
complexificationgC = kC +mC of the symmetric decomposition.

2.2. Hyper-Kähler and para-hyper-K¨ahler symmetric spaces

A (possibly indefinite) (ε)-hyper-Kähler manifoldis a pseudo-Riemannian manifold
(M4n, g) together with a parallel (ε)-hypercomplex structure, i.e. three anticommuting par-
allel endomorphism fields (J1, J2, J3 = J1J2), which are skew symmetric with respect tog
and which satisfyJ2

1 = J2
2 = εId, ε ∈ {+,−}. Notice that the productJ3 is a parallel skew

symmetric complex structure. The notion of (ε)-hyper-K̈ahler manifold unifies the notion
of hyper-Kähler manifold(ε = −) and ofpara-hyper-Kähler manifold(ε = +). Notice that
the triple (J1, J2, J3) defines the structure of a vector space over the quaternions (ε = −)
or over the para-quaternions (ε = +) on the tangent space.

The above conditions mean that the holonomy group Hol⊂ Sp(k, l), n = k + l, in the
caseε = − and Hol⊂ Sp(n,R) := Sp(R2n) in the caseε = +. Two (ε)-hyper-K̈ahler man-
ifolds (M,g, Jα) (α = 1,2,3) and (M ′, g′, J ′

α) are calledisomorphicif there is a diffeomor-
phismϕ : M → M ′ such thatϕ∗J ′

α = Jα andϕ∗g′ = g.
An (ε)-hyper-Kähler symmetric spaceis a pseudo-Riemannian symmetric space (M =

G/K, g) together with an invariant (ε)-hypercomplex structure. Consider now a simply
connected (ε)-hyper-K̈ahler symmetric space (M = G/K, g, Jα). Without restriction of
generality we will assume thatG acts almost effectively.M being (ε)-hyper-K̈ahler is
equivalent to

AdK|m ⊂
{

Sp(k, l), for ε = −
Sp(n,R), for ε = +.
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SinceK is connected, this condition means precisely that adk|m ⊂ so(m) commutes with
the Lie algebra

Q := span{J1, J2, J3} =
{

sp(1)⊂ so(m) = so(4k,4l), for ε = −
sl(2,R) ⊂ so(m) = so(2n,2n), for ε = +

spanned by the three anticommuting structuresJ1, J2, J3.
A complex hyper-K¨ahler manifold is a complex Riemannian manifold (M4n, g) of

complex dimension 4n together with a compatible hypercomplex structure, i.e. threeg-
orthogonal parallel complex linear endomorphisms (J1, J2, J3 = J1J2) with J2

α = −1. This
means that the holonomy group Hol⊂ Sp(n,C) = ZO(4n,C)(Sp(1,C)). The linear group
Sp(n,C) is diagonally embedded into Sp(n,C) × Sp(n,C) ⊂ GL(4n,C). Two complex
hyper-K̈ahler manifolds (M,g, Jα) (α = 1,2,3) and (M ′, g′, J ′

α) are calledisomorphicif
there exists a holomorphic diffeomorphismϕ : M → M ′ such thatϕ∗J ′

α = Jα andϕ∗g′ = g.
We notice that the complexification of an (ε)-hyper-K̈ahler symmetric space is a complex
hyper-K̈ahler symmetric space.

3. Classification of real and complex hyper-K̈ahler symmetric spaces

Now we recall the classification of real and complex hyper-Kähler symmetric spaces
[AC]. Let (E,ω) be a complex symplectic vector space of dimension 2n andE = E+ ⊕ E−
a Lagrangian decomposition. Then any elementS ∈ S4E+ defines a simply connected
complex symmetric spaceMc

S of dimension 4n which is associated with the symmetric
decomposition

g = h+m,

wherem = H ⊗ E,H = C
2 = C1 ⊕ Cj = H = span{1, i, j, k} with its standard complex

symplectic structureωH , h = span{Se,e′ | e, e′ ∈ E} ⊂ sp(E) with the natural action onm ⊂
H ⊗ E and the Lie bracketm ∧m→ h is given by

[h⊗ e, h′ ⊗ e′] = ωH (h, h′)Se,e′ .

HereSe,e′ ∈ S2E = sp(E) denotes the contraction ofS ∈ S4E+ ⊂ S4E with ee′ ∈ S2E by
means ofω.

Theorem 1. [AC] Let Mc
S be the complex symmetric space associated toS ∈ S4E+.

Then it is a complex hyper-K¨ahler symmetric space with complex Riemannian metric
g defined byωH ⊗ ω. and compatible hypercomplex structure(J1, J2, J3) defined by
(Ri ⊗ Id, Rj ⊗ Id,−Rk ⊗ Id),whereRq denotes the right multiplication by the quaternion
q. Moreover, Mc

S has no flat factor if and only ifSE,EE := span{Se,e′e′′|e, e′, e′′ ∈ E} =
E+. Conversely, any simply connected complex hyper-K¨ahler symmetric space is of the
formMc

S .
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To obtain real hyper-K̈ahler symmetric spaces, let us assume that on (E,ω) we have a
compatible quaternionic structurej : E → E, i.e. an antilinear map such thatj2 = −Id and
j∗ω = ω̄, and aj-invariant Lagrangian decompositionE = E+ ⊕ E−. Such a decompo-
sition exists if and only if the Hermitian formγ = ω(·, j·) has real signature (4m,4m),
wherem is related to the complex dimension 4n of Mc

S by n = 2m. On H = H we
fix the standard quaternionic structurejH = Lj, the left-multiplication withj. It satis-
fies (jH )∗ωH = ω̄H . We denote byτ the real structure onS2rE induced by the quater-
nionic structurej on E: τ(e1e2 . . . e2r) := j(e1)j(e2) . . . j(e2r), ei ∈ E. On m = H ⊗ E

we have the real structureρ := jH ⊗ j. We assume thatS ∈ S4E+ is real, i.e.τS = S.
ThenS defines a (real) symmetric spaceMS , which is associated with the symmetric
decomposition

g0 = h0 +m0,

where

h0 := hτ := h ∩ (S2E)τ, m0 := mρ = (H ⊗ E)ρ.

Theorem 2. [AC] Let MS be the symmetric space associated toS ∈ (S4E+)τ . Then
it is a (real) hyper-Kähler symmetric space with pseudo-Riemannian metric defined
by (ωH ⊗ ω)|m0

and compatible hypercomplex structure(J1, J2, J3) defined byJ1 :=
(Ri ⊗ Id)|m0

, J2 := (Rj ⊗ Id)|m0
and J3 := J1J2 = −(Rk ⊗ Id)|m0

. The metric has sig-
nature (4m,4m),4m = dimC E. The complexification ofMS coincides with the complex
hyper-Kähler symmetric spaceMc

S associated toS ∈ S4E+. Any simply connected hyper-
Kähler symmetric space is the Riemannian product of a flat hyper-K¨ahler symmetric space
(a hyper-Hermitian vector space) of arbitrary signature(4p,4q) and a hyper-K¨ahler sym-
metric space of the formMS .

4. Classification of para-hyper-Kähler symmetric spaces

In this section we give the classification of simply connected para-hyper-Kähler sym-
metric spaces. The basic data for the construction of such spaces are the following: (E0, ω0)
a real symplectic vector space of real dimension 2n,E0 = E+

0 ⊕ E−
0 a Lagrangian decom-

position andH0 = R
2 with its standard symplectic structureωH0 and para-hypercomplex

structure

j1 =
(

0 1

1 0

)
, j2 =

(
1 0

0 −1

)
, and j3 =

(
0 −1

1 0

)
.

Then any elementS ∈ S4E+
0 defines a simply connected symmetric spaceMS of dimension

4n which is associated with the symmetric decomposition

g0 = h0 +m0,
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wherem = H0 ⊗ E0, h = span{Se,e′ |e, e′ ∈ E0} ⊂ sp(E0) with the natural action onm0 =
H0 ⊗ E0 and the Lie bracketm0 ∧m0 → h0 is given by

[h⊗ e, h′ ⊗ e′] = ωH0 (h, h′)Se,e′ .

HereSe,e′ ∈ S2E0 = sp(E0) denotes the contraction ofS ∈ S4E+
0 ⊂ S4E0 with ee′ ∈ S2E0

by means ofω0.

Proposition 1. The Lie algebrag0 associated withS ∈ S4E+
0 is 3-step nilpotent ifS �= 0

and Abelian ifS = 0.

Proof. To S ∈ S4E+
0 we associate the subspace

,S := SE0,E0E0 = span{Se,e′e′′|e, e′, e′′ ∈ E0} ⊂ E+
0 ,

which is nontrivial forS �= 0. Using the fact thath0 is Abelian and thatSe,e′e′′ = 0 if one
of the three arguments belongs toE+

0 , one can easily check that the central series is given
by:

[g0, g0] = h0 +H0 ⊗,S

[g0, [g0, g0]] = H0 ⊗,S

[g0, [g0, [g0, g0]]] = 0.

�
Theorem 3. Let MS be the symmetric space associated toS ∈ S4E+

0 . Then it
is a para-hyper-K¨ahler symmetric space with pseudo-Riemannian metric defined by
ωH0 ⊗ ω0 and compatible para-hypercomplex structure(J1, J2, J3) defined byJ1 :=
j1 ⊗ Id, J2 := j2 ⊗ Id andJ3 := J1J2 = j3 ⊗ Id.Themetric has signature(2n,2n),2n =
dimE0. The complexification ofMS coincides with the complex hyper-K¨ahler sym-
metric spaceMc

Sc associated to the complex extensionSc ∈ S4E+, E+ := E+
0 ⊗ C,

of S ∈ S4E+
0 . Any simply connected para-hyper-K¨ahler symmetric space is of the

formMS .

Proof. It is easy to check thatMS is a para-hyper-K̈ahler symmetric space of signa-
ture (2n,2n) whose complexification coincides with the complex hyper-Kähler symmet-
ric spaceMc

Sc . We now prove that any simply connected para-hyper-Kähler symmetric
space is of the formMS . LetM be such a symmetric space associated with a symmetric
decomposition

g0 = h0 +m0.

SinceM is para-hyper-K̈ahler , we can identifym0 = H0 ⊗ E0 with the tensor product
of two symplectic vector spacesH0 = R

2 andE0. The pseudo-Riemannian metric onM
corresponds to the product of the two symplectic structures and the holonomy Lie algebra
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h0 ⊂ Id ⊗ sp(E0) = sp(E0) acts only on the second factor. The complexificationMc of M
is the complex hyper-K̈ahler symmetric space associated to the symmetric decomposition

g = h+m, h := h0 ⊗ C, m := m0 ⊗ C = H ⊗ E,

where (E,ω) and (H,ωH ) are the complexifications of the real symplectic vector spaces
(E0, ω0) and (H0, ω

H
0 ), respectively. ByTheorem 3, Mc = MSc is associated to a quartic

polynomialSc ∈ S4E+ ⊂ S4E = S4E∗, whereE+ ⊂ E is a Lagrangian subspace. Now
we prove that the multilinear formSc ∈ S4E∗ has real values onS4E0 and hence defines
an element ofS4E0. First we remark that by the definition of the Lie bracketm×m→ h

S2E0 = sp(E0) ⊃ h0 = [m0,m0] = span{Sce,e′ωH (h, h′)|e, e′ ∈ E0, h, h
′ ∈ H0}

= span{Sce,e′ |e, e′ ∈ E0} =: ScE0,E0
.

This shows thatScE0,E0
⊂ S2E0 and hence thatSc is real valued. We denote byS the

corresponding element ofS4E0. Then we have [h⊗ e, h′ ⊗ e′] = Se,e′ω
H
0 (h, h′) for all

e, e′ ∈ E0 andh, h′ ∈ H0 andh0 = [m0,m0] = SE0,E0. The (real) subspaceE0 ∩ E+ ⊂
E0 is isotropic. Therefore, there exists a Lagrangian subspaceE+

0 ⊂ E0, which contains
E0 ∩ E+. Thus,

SE0,E0E0 = ScE0,E0
E0 ⊂ E0 ∩ E+ ⊂ E+

0 .

Now the next lemma implies thatS ∈ S4E+
0 and we can conclude thatM = MS . �

Lemma 1. Let E be a (real or complex) symplectic vector space, F ⊂ E a subspace,
S ∈ S4E andSE,EE ⊂ F . ThenS ∈ S4F .

Proof. LetC ⊂ E be a complement ofF. We denote byC∧ andF∧ the annihilators ofCand
F in E∗, respectively. We can consider them again as subspaces ofE via the identification
E∗ ∼= E given by the symplectic form. The decomposition

S4E = ⊕p+q=4S
pC · SqF.

gives rise to a decompositionS = ∑
p+q=4 S

p,q, whereSp,q ∈ SpC · SqF . Now from

F ⊃ SE,EE ⊃ SF∧,F∧F∧ = S
4,0
F∧,F∧F

∧ ⊕ S
3,1
F∧,F∧F

∧,

S
4,0
F∧,F∧F

∧ ⊂ C and S
3,1
F∧,F∧F

∧ ⊂ F,

we conclude thatS4,0 = 0. Then, similarly, by considering successivelySF∧,F∧C∧ ⊂ F ,
SF∧,C∧C∧ ⊂ F andSC∧,C∧C∧ ⊂ F we can conclude thatS3,1 = 0,S2,2 = 0 andS1,3 = 0,
respectively. This shows thatS = S0,4 ∈ S4F . �
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5. Hyper-Kähler symmetric spaces are Osserman

Let (M,g) be a pseudo-Riemannian (or complex Riemannian) manifold,R its curva-
ture tensor andX ∈ TpM a tangent vector. The symmetric operatorRX : TpM � Y �→
R(Y,X)X ∈ TpM is called theJacobi operatorof X. We denote byS(TM) := {X ∈
TM|g(X,X) = ±1} the bundle of unit vectors.

Definition 1. (M,g) is called anOsserman spaceif the characteristic polynomialPX(t) =
det(t Id − RX) of RX is independent ofX ∈ S(TM).

Theorem4.Let(M,g)bean(ε)-hyper-Kähler symmetric space (or acomplexhyper-K¨ahler
symmetric space) of dimension4n. Then(M,g) is an Osserman space. More precisely, the
product of any two Jacobi operators is zero. In particular, all Jacobi operators are nilpotent
andPX(t) = t4n.

Proof. Since the complexification of any (ε)-hyper-K̈ahler symmetric space is a complex
hyper-K̈ahler symmetric space, it is sufficient to prove the theorem for complex hyper-
Kähler symmetric spaces. By Theorem 1 any complex hyper-Kähler symmetric spaceM is
of the formM = MS for someS ∈ S4E+. It is sufficient to check thatRXRY = 0 for all
X, Y ∈ ToM, whereo is the canonical base point of the symmetric spaceMS . Any tangent
vectorX ∈ ToM = m = H ⊗ E can be decomposed asX = ∑2

i=1 hi ⊗ ei, wherehi ∈ H
andei ∈ E. SoRX is given by:

RX =
∑
i,j

R(·, hi ⊗ ei)hj ⊗ ej.

This shows that it is sufficient to check that the product of any two operators of the form
R(·, h⊗ e)h′ ⊗ e′ is zero. Leth1, . . . , h4 ∈ H ande1, . . . , e4 ∈ E. Applying the operator
R(·, h1 ⊗ e1)h2 ⊗ e2 to h⊗ e we have:

R(h⊗ e, h1 ⊗ e1)h2 ⊗ e2 = ωH (h, h1)h2 ⊗ Se,e1e2 = ωH (h, h1)h2 ⊗ Se1,e2e.

Next we applyR(·, h3 ⊗ e3)h4 ⊗ e4 to the result, which yields:

ωH (h, h1)R(h2 ⊗ Se1,e2e, h3 ⊗ e3)h4 ⊗ e4

= ωH (h, h1)ωH (h2, h3)h4 ⊗ S(Se1,e2e),e3
e4

= ωH (h, h1)ωH (h2, h3)h4 ⊗ Se3,e4Se1,e2e = 0.

�
Here we have used the complete symmetry ofS, the fact thatSe1,e2e ∈ E+ and that

SE,E ⊂ S2E+ vanishes onE+. This shows that the composition of any two operators of
the formR(·, h⊗ e)h′ ⊗ e′ is zero and, hence, thatRXRY = 0 for allX, Y .

Remark 1. If S �= 0 then the Jordan normal form of the Jacobi operatorsRX depends on the
directionX. In factRX = 0 if X ∈ H ⊗ E+ and, ifS �= 0, then there existsX ∈ H ⊗ E−
such thatRX �= 0.
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Remark 2. In dimension 4, pseudo-Riemannian manifolds satisfying the Osserman con-
dition pointwise are characterized as self-dual Einstein 4-manifolds[1]. This implies that
symmetric Ricci-flat Osserman spaces of dimension 4 are the same as symmetric (ε)-hyper-
Kähler manifolds. Similarly,complexsymmetric Ricci-flat Osserman spaces of dimension
4 are the same ascomplexsymmetric hyper-K̈ahler manifolds. It follows from Theorem 1
that any complex hyper-K̈ahler symmetric space of dimension 4 is defined by a quartic
polynomialS = e4, e ∈ E. Up to isomorphism, there are only two such manifolds: the flat
one corresponding toe = 0 and the non-flat one corresponding toe �= 0. In the real case, it
follows from Theorem 2 that any 4-dimensional hyper-Kähler symmetric space is flat. How-
ever, by Theorem 3 there exists two non-flat para-hyper-Kähler symmetric spaces which
correspond to the polynomials±e4, e ∈ E0. These manifolds occur in[3] as examples of
Osserman spaces of signature (2,2).
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